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Analytical Development of a Robust Controller 
for Smart Structural Systems 

Chul Hue  Park*,  Seong Ii Hong,  Hyun Chul Park  
Department of  Mechanical Engineering, 

Pohang University of  Science and Technology (POSTECH), 
Pohang, KyungBuk 790-784, Korea 

This paper aims at demonstrating the feasibility of active control of beams with a multiob- 

jective state-feedback control technique. The multiobjective state-feedback controller is de- 

signed on a linear matrix inequality (LMI) approach for the multiobjective synthesis. The 

design objectives are to achieve a mix of H** performance and Hz performance satisfying 

constraints on the c losed- loop pole locations in the face of model uncertainties. The controller 

is also designed to reject the effects of  the noise and external of disturbances. For  the theoretical 

analysis, the governing equation of motion is derived by Hamilton's principle to describe the 

dynamics of a smart structural system. Numerical examples are presented to demonstrate the 

effectiveness of the integrated robust controller in damping out the multiple vibration modes of 

the piezo/beam system. 
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1. Introduction 

As system elements become more lightweight, 

to satisfy inertia and size requirement, vibration 

becomes a dominant factor in their undesirable 

dynamic behavior. The unwanted vibration prob- 

lem could be avoided through the use of  active 

layer damping treatments. In the simplest form of 

active layer damping system, two piezoelectric 

ceramics are bonded symmetrically to a vibrating 

structure and have abilities of producing and/or  

monitoring structural deformations. Active vibra- 

tion control scheme has been heavily researched 

in the past decade because of their high power 

density as compared with conventional actuators. 

Especially, the real time sensing and actuation 
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capabilities provide a powerful means for active 

vibration control. 

Bailey and Hubbard (1985) proposed to use a 

piezoelectric polymer as a distributed parameter 

actuator and designed an active vibration damper 

using a distributed parameter theory. Lyapunov's 

second method for distr ibuted- parameter systems 

was used to design a control algorithm for the ac- 

tive damper. Fanson and Caughey (1990) intro- 

duced PPF  (Positive Position Feedback) for vi- 

bration suppression in large space structure which 

is investigated in laboratory experiments on a 

thin cantilever beam. This technique makes use of 

generalized displacement measurements to accom- 

plish vibration reduction. Kim and Nam (1996) 

designed an active flutter suppression system of  a 

composite plate wing model using a reduced or- 

der model. The control parameters were deter- 

mined using the mixed-sensitivity H** control 
method. Shin et a1.(1998) presented the active 

vibration control of  a flexible cantilever beam by 

adopting the adaptive controller based on the 

Fi l tered-X LMS algorithm. 
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In this paper, the feasibility of  active layer 

damping for beams is investigated by using a 

multiobjective state-feedback control technique. 

The multiobjective control law is designed as 

considering the fact that the c losed- loop system 

satisfies a number of objectives such as disturb- 

ance attenuation to achieve the wanted perform- 

ance in time and frequency domain and robust 

stabilization of  uncertain system. For  frequency 

domain performance, a mixed H2/H.  controller 

is adopted (Bernstein and Haddad, 1989). This 

approach is to minimize an auxiliary cost subject 

to an n** norm constraint, and this cost yields 

an upper bound on the nz  norm. In contrast to 

the mixed H2/H~ control theory, regional pole 

placement constraints are added to offer a nu- 

merically tractable means of  attacking problems 

in time domain. Satisfactory time response and 

c losed- loop damping can be achieved by forcing 

the c losed- loop poles into a suitable subregion of 

the left-half  plane (Chilali  and Gahinet, 1996). 

These constraints of  mixed H2/H~ synthesis and 

regional pole placement are expressed in terms of  

linear matrix inequalities (LMI).  The global sta- 

bility and applicabil i ty of  an LMI based multi- 

objective state-feedback controller are presented 

by numerical simulations in damping out the 

multiple vibration modes of  the piezo/beam sys- 

tem in the face of  uncertainties, noise and external 

disturbances. 

2. Equation of Motion 
of the Piezo/beam System 

The mathematical model of a piezo/beam sys- 

tem is developed to describe the flexural vibration 

behavior of  a cantilevered piezo/beam system. 

The schematic drawings of  the proposed smart 

structure are illustrated in Fig. 1. The beam has 

length lb, width bb, thickness tb, and mass density 

Pb. The PZT has thickness tp, elastic modulus 
measured at constant electric field Ep, and piezo- 

electric constant da~ in the longitudinal direction. 

The derivation of  system equations is based on 

the assumption of  Euler Bernoulli beam. The 

constitutive equation for a piezoelectric element 

depends on the mechanical stress, tr, strain, e, 

Sensor Output 
Voltage 

~uator In1~tt 
Voltage 

,rr~ic 
or 

Fig. 1 
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Actuator Base Beam 
Schematic drawings of smart structural system 

as well as the electric field, E ,  and the electric 

displacement, D. The constitutive equation of the 

piezoelectric material can be written as (IEEE, 

1987) 

<,1 
EJ=L-h~, B~ JLDJ 

where Ep is the elastic modulus at the constant 

displacement, h31 is the piezoelectric constant, and 

~ is the dielectric constant. 

The kinetic energy of a piezo/beam system can 

be described as 

T =  Tb+2T~ (2) 

1 /-to - -  [ a w \ Z _  
where I b = T j  ° p~'lb ~'~"t-iI as, 

I ~b a w  2 T,=-f f ° pbA,(-~-) [H(s-s,) -H(s-sz) ]ds. 
Here, Zb and Tp are the kinetic energy of  a 

base beam and piezoceramic layer, respectively. 

H is the Heaviside's function, w is the transverse 

displacement of the beam, and Ab, Ap are the 

cross sectional area of  beam and piezo layer, 

respectively. The subscripts b and p represent the 

base beam and piezoceramic, respectively. It is 

noted that there are two piezoceramics in the 

piezo/beam system as shown in Fig. 1: one is 

attached on the beam as a sensor (denoted by 

subscript s) ,  the other is beneath the beam as an 

actuator (denoted by subscript a) .  
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The strain energy of a piezo/beam system can 

be described as 

U= Ub + Us + Ua (3) 

where 

02w ~z d 

I ~b OZw 2 02w 

+ ApB~D~ ] [ H (s - s , )  - H (s -s2)  ds] 

u s = l  f f iadV 

1 l,, o~W 2 

1 
Here, zn=-~(tb+tp) and Ib and Ip are the area 

moment of inertia about the neutral axis of  the 

each layer. Moreover, Oa represents the electric 

displacement of  the piezo sensing and actuating 

layer, respectively. 

The virtual work consists of  two terms : the first 

term is the work done by external force, and the 

second is the inherent damping force of  a base 

structure. 

l,, OW  w=fo f(s, t) wds (4) 

The equations of motion can be obtained by ap- 

plying Hamilton's principle (Meirovitch, 1967) 

8 H = S f t " ( T - U + W ) d t = o  (5) 

where tl and t2 are the end of points in the time 

domain and $ is the variational operator. Substi- 

tuting the potential energy, kinetic energy, and 

virtual work into Hamilton's principle yields the 

following equations of motion. 

~"w aw 04w 

~w ~w 

I 0 z 
=f(s, t)-Tb,hslDatp(tb+t,)(~s2[n(s-sll-H(s-sz)]) 

where bp is the width of  the piezoceramic. The 

assumed mode method is used to discretize the 

governing equation [Eq. (6)] into a set of  ordi- 

nary differential equation. The flexural motion 

lbr a cantilever beam is approximated by 

w(s, t) =~.¢,,(s) ~,.(t) (7) 
1=1 

where ¢z, (s) = s i n / L s - s i n h  l~s-  a, ( cosh /5 ' , s -  

cos l~,s). Here the constants oti = (sin/%h+sinh 
&/~)/(cos B,h+coshB, h) are the mode shape 

coefficients (Rao, 1995). Applying mode shape 

functions to the equation of  motion [Eq. (6)] 

results in the following discretized differential 

equations of the piezo/beam system. 

M#),(t) + Hd?,(t) + K,~,(t) =f,.ext W f,.p~o, 
(8) 

i = i ,  2 , " - , 0 o  

where 

M,=ov4b fo ~"O,(s) Zds 
lb 

+ 2ppAb fo ¢/,(s)~[H(s-sO -H(s-s2) ]ds 

lb 

C,=cb fo ¢4(s)Zds 

K,=Ed, fo tbO:' (s)~ds 

+ 2Eplp fo "Cd' (s)2[ H (s-s,) - H  (s-s2) ] ds 

f,.ext= fotbCt,(s) f (s, t) ds 

I f,.p~,o = -~bpd3~Ep Vc (t) ( tb + tp) 
lb 

x f0 ¢,(s)  [ ~ ' ( s - s , ) - 3 ' ( s - s 2 ) ] d s  

where Vc(t) is the actuator input voltage and d3, 

is the piezoelectric material constant. 
The charge generated by the piezo sensor layer 

is related to the bending strain of the cantilever 

beam as lbllows (Pota and Alberts, 1995) : 

q(s, t --( k~l ~¢c(s, t) bp (9) 
) - \  gs, / 

where k3, is the electromechanical coupling con- 

stant ; g3, is the piezoelectric stress constant ; and 

¢c is the bending strain of the system. The total 

charge developed on the sensing layer is obtained 
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by integrating q (s, t) over the entire length of  the 
piezoelectric element, 

Q(t) =ff'q(s, t)[H(s-s,) -H(s-s2l ]ds 
t~ ~ (10) tb k31 ~w 

Applying mode shape functions, the sensor vol- 
tage is given by the following formula 

Q(t) 
Vs(t) = 

Cbp(sz-s~) 

C(s2-s~) T +tp g3~ Os 2 

x [H(s-st) -H(s-s2)]ds]~,(t), 
m 

i=1, 2, " " , ~  

(11) 

where C is the capacitance per unit area and 
bp(s2-s~) is the surface area of  the piezoelectric 
element. 

3. LMI Formulations 
of the System Performance 

The governing equation [Eq. (8) ] of the piezo/ 
beam system can be transformed into the follow- 
ing modal differential equation, 

~, ( t )  +2~,co,O,(t) +co2,r/, (t) 
(12) 

= f ~xe + f ,,p~o, i= 1, 2, ..., oo 

where co, and ~', are the modal frequency and 
damping ratio of the i-th mode, respectively. The 
lowest n finite modes will be actively controlled 
and the remainder mode be classified as residual 
modes. The discretized structure modal equation 
[Eq. (12) ] and output sensor equation [Eq. (1 I) ] 
can be expressed in a standard state-space form as 
considering a linear time-invariant (LT1) system. 

~c(t) = A x ( t )  + B .u ( t )  + B~w(t)  

z..(t) =C~.x(t) + D**.u(t) + D..~w(t) 
(13) 

z2(t) =Czx(t) + Dz,u(t) + D2ww(t) 

y(t) =Cyx(t) + Dy, u(t) + Dyww(t) 

where x ( t ) = ~ + - - - , ~  n, u ( t ) :  ~+---,~'~", w ( t ) :  

~+---'~"~', ~ ( t ) :  ~+---,~",-, z2(t): ~+---,~"-, 

Fig. 2 

y 

Standard H#H® feedback configuratton 

and y ( t ) :  ~._..~ny. The controlled mode state 
vectors are defined by x(t)=[rh(t) ,  r/z(t), " ' ,  
~Tm(t), //rn+t(t), "", 0 n ( t ) ] ~  n. Moreover, u(t) 
is the control input;  w(t) is the exogenous in- 
put;  z**(t) and z2(t) are regulated output;  and 
y(t) is measured output. The specifications and 
objectives under consideration include H** per- 
formance and H2 performance. The standard H2/ 
H** feedback configuration for the two linear 
time-invariant systems is shown in Fig. 2. 

3.1 H® performance 
In this section, we construct a state-feedback 

controller which is arbitrarily close to the H® op- 
timum (Gahinet and Apkarian, 1994; Khargone- 
kar et al., 1988 ; Petersen, 1987). Our objective is 
to find a static state feedback controller u = K x  

such that the resulting closed-loop transfer matrix 
has H** norm smaller than some a priori given 
upper bound. Consider again the system (13). 
The closed-loop system can be described by 

2 ( t )  = A a x ( t )  +Bww(t) 

z~(t) =Cc~x(t) +D..ww(t) 
(14) 

where A a = A  + B ~ f  and Cct= C®+ D**jC 
Suppose there exists a quadratic Lyapunov 

function V( t )=xrpx ,  P > 0 ,  and for any real 

number 7 ~ 0  such that for all t (Boyd et al., 
1994), 

d v ( x ( t ) )  +z~(t) rz,.(t) -rZw(t) rw(t) <0 (15) 

To show this, we integrate (15) from 0 to T, with 
the initial condition x (0 )=0 ,  to obtain 

+j(r[z,.(t) rz, . ( t)- /w(t)rw(t)]dt<O (16) V(x(T)) 

Since V ( x ( r ) ) ~ O ,  this implies 
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II ~ (t) 115 
ii w (t) i1------------~ < ), (17) 

From the Eq. (16), the c losed- loop system yields 

the following conditions 

Q.C2+L D'-u [AO®+Q.Ar+B~L+LrB r B. r r r 
/ )T B, -r2I D. r, <0, Q®>0 (18) 

C®Q® + D®~L O.. -I  

where Q,o=P£ I. The optimal solution is comput- 

ed by minimizing ~, over the variables Q**, L and 

9" satisfying conditions (18). Fig. 3 Pole placement region 

3.2 //2 performance 
The /-/2 state feedback control problem is to 

find a static control gain K that stabilizes sys- 

tem internally and minimizes the/-/2 norm of  the 

transfer matrix Twz from w(t)  to z2(t) .  Let us 

introduce a short hand notation of  the closed 

loop system as follows: 

~ ( t )  = A a x ( t )  +B~w( t )  
(19) 

z2(t) =Ccnx(t)  

where A,~ = A + B J i  and Ccz2 = Cz + D2uK. And 
2 t r recall that II T~z115 = race (Ca2QcCc,2) where Qc 

is the solution of  the following Lyapunov equa- 
tion and controllability Grarnian (Scherer et al., 

1997), 

r r 0 Ac,Qc + Q~4~, + B~B~ = (20) 

Since Qc< Q2 for any symmetric Qz>0, II Zw~,ll~-- 
trace (CctzQcCr2) < trace (Cct2QzCrz) < trace (Y)  
whenever the symmetric matrices Qz and Ysatisfy 

B~ 
(21) 

Y C2Q2+D'~L]<o Qz>o 
Q2 C r + L r D2r~ Q2 J ' 

where L=KQz. We can compute optimal solu- 

tion by minimizing Ysatisfying conditions (21). 

3.3 Regional pole constraints 
It is known that the transient response of a 

linear system is related to the locations of its poles 
(Ogata, 1990). Confining the c losed- loop poles 

to this region as shown in Fig. 3 ensures a mini- 
mum decay rate a,, a minimum damping ratio ~', 

and a maximum undamped natural frequency wa. 

This fact makes LMI regions particularly ap- 

pealing for synthesis purposes. Let the LM! re- 

gion be characterized m terms of  the m × m block 

matrix 

M~ ( A a ,  Q~): 
=a®QR+fl®(Ac,QR) + B r ® ( A ¢ t Q R )  r (22) 

= [ ah,Ve + fl~Ac,Qe + fl,,QRAr,] ~ ~.,~,~ 

The matrix Acl is -stable if and only if there exists 

a symmetric matrix Q~ such that (Chilali and 

Gahinet, 1996) 

MR(A~,, QR) <0, QR>0 (23) 

It should be noted that for the class of LMI re- 

gions R~ and R2 and their associated characteris- 

tic functions fR, and fR,, the intersection R = 

R1AR2 is also an LMI region. 

4. Multiobjective Synthesis  

In the previous section, several t ime-and fre- 

quency-domain specifications have been express- 

ed as LMI constraints on the c losed- loop state 

space matrices. These analysis results are now 

used for multiobjectlve synthesis. The objective 

of the synthesis is to minimize the /-/2 norm 

of II Twz211 over all state-feedback gains K that 

enforce the H~. and pole placement constraints. 

From a previous discussion, this is equivalent to 

minimizing trace(Y) over all matrices Q**, Q2, 

QR, Yand  L satisfying (18), (21), and (23). In 

order to recover convexity, all specifications are 
enforced by a single c losed- loop Lyapunov func- 
tion V ( x ( t ) )  =xrQ-lx  with Q > 0 .  This amounts 
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to imposing the constraint. 

Q=Q,,=Q2=QR (24) 

With (24) in force, all inequalities can be further 
reduced to linear matrix inequalities. Clearly, this 
restriction is stringent and brings conservatism 
into the design. Nevertheless, the resulting syn- 
thesis technique has valuable merits over existing 
alternatives (Scherer et al., 1997). The solution 
can be sought by substituting (24) to (18), (21), 
and (23). Admittedly with some conservatism, we 
are left with computing 

](T~a): =inf{ trace( Y): Q, Y, L satisfy (18), 
(21) and (23) with Q=Qo.=Qz=QR} (25) 

The /-/2 performance index ](Twz2) defined by 
(25) can be computed as the global minimum of 
the following LMI optimization problem. 

Minimize trace (Y )  over Q= Qr >0, Y =  y r  and 
L subject to the LMI  constraints. 

AQ+QAr+B~L+LrB r B,  QC~+LrD5~] 

C.Q+ D®~L D.. - 
(26) 

[QCr +Y rD2r C2QQD2~]<0 

[ak,Q+Bk, (AQ+B~L) +B~ (QAr+ LrBr) ] ~k.,~, <0 

The auxiliary performance ] (Twz~) is an upper 
estimate of  the optimal/-/2 performance subject to 
the H.. and pole placement constraints. 

5. Uncertainty 

The parameter uncertainties for this study are 
-----4% range of natural frequency variations at the 
first mode. These uncertainties are modeled by 
affine parameter dependent uncertainties and then 
transformed into polytopic state-space model 
(Boyd et al., 1994). Following explanation can be 
extended to entire uncertain system. 

5.1 Affine parameter dependent models 
(PDS) 

The dynamic equations of  motions with uncer- 
tain coefficients give rise to parameter dependent 

models of the form 

it(t) = A  (p) x ( t )  + Buu( t )  
with A (p) = Ao + p~A~ + .. . + P,An 

(27) 

where A ( ' )  are known functions of some para- 
meter vector p=p(p~, ..., P,). The coefficients, 
Ao, "", An, fully characterize the dependence on 
the uncertain parameters, pt, .-., Pn. Parameter 
uncertainty is quantified by the range of para- 
meter values and possibly the rates of parameter 
variation. The parameter uncertainty range can 
be described as a box in the parameter space. In 
other words, Pi ranges between two empirically 
determined extremal values p~-~ [p~, "~,- ]. 

5.2 Polytopic models 
We call polytopic system a linear time-varying 

system 

x( t )=A( t )x ( t )+Buu( t )  (28) 

whose A (t) matrix varies within a fixed polytope 
of matrices, i.e., 

A(t)  ECo{A,, ..., A~}: 
(29) 

where At, "',  AM are given vertex systems and 
"Co" means the convex hull. In other words, 
A(t) is a convex combination of the matrices 
A1, "", m~. The nonnegative number ql, "", qn 
are called the polytopic coordnates of  m. Affine 
parameter-dependent models are converted to 
polytopic ones. The parameter vector P=P(Pl, "", 
Pn) takes values in a parameter box with 2 n 
corners. If the function A (p) is affine in p, it 
maps this parameter box to some polytope of  m 
matrices. 

5.3 Extension to uncertain systems 
The closed-loop systems discussed above are 

extended to uncertain system described by a poly- 
topic state-space model. Seeking a single quad- 
ratic Lyapunov function that enforces the design 
objectives for all plants in the polytope leads to 
the following multi-model counterpart of the 
LMI conditions. 
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Minimize trace (Y) over Q = Q r > 0 ,  y = y r  
and L subject to the LMI  constraints. 

[A~Q+QA r + B " L + L r B r B W D r T ] < O  B r - ~ I  QC~+LrDr'] 

C~Q+ D®~L D®~ 

[Qcf +YrDI CzQ;D2,,]_.]< 0 (30) 

[a,~Q+/~,~ (A,Q+ Bj_.) + I~, ( QA r + L rB r) ]~,,t~.<O, 

i=L" ,N  

where Q=P-~ and L=KQ. We compute optimal 

solution by minimizing ;v over the variables Q, L 

and 9" satisfying the above conditions. 

6. N u m e r i c a l  A n a l y s i s  

To illustrate the effectiveness of the multiob- 

jective state-feedback controller in suppressing 

the multi-mode vibration control of the piezo/ 

beam system, numerical analysis is performed 

with the help of MATLAB Toolbox (Gahinet et 

al., 1995). The physical and geometrical para- 

meters of the aluminum beam and PZT are 

indicated in Tables 1 and 2. The inherent modal 

T a b l e  1 Physmal and geometrical parameters of 
aluminum beam 

Property Symbol Value 

Young's modulus Eb 69 X 109 Pa 

Beam density Pb 2700 kg/m a 

Beam width bb 20.7 mm 

Beam thickness tb 2 mm 

Beam length lb 250 mm 

Table 2 Physical and geometrical parameters of 
PZT 

Property Symbol Value 

Young's modulus Ep 5.9 × 109 Pa 

PZT density pp 7800 kg/m 3 

PZT width bp 20 7 mm 

PZT thickness tp 0.267 mm 

PZT charge constant dal -260 × 10 -~ (C/N) 

Coupling coefficient ka~ 0.36 

PZT voltage constant g3a 9.5 × 10 -a (mZ/C) 

End point of PZT sz 5.1 cm 

Start point of PZT s~ 0.1 cm 

damping ratio ~ of the piezo/beam system is 

assumed by 0.002 for the each mode. 

The state-space model of the overall augmented 

piezoelectric laminated beam system is given by 

[ Yc(t) =Ax(t) +Buu(t) +Bww(t) 
I 

[ z,.(t) =C**x(t) +D®,~u(t) +D®ww(t) 
~: ~ ] z2(t)=Gx(t)+l~uu(t)+~ww(t) (31) 

[ y(t)= Cyx (t) +D~,u(t) +Dyww(t) 

with 

A= 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 I 

- ~  0 0 - 2 ~  0 0 
0 --0)~ 0 0 - -2~2 0 
0 0 - -~  0 0 - -2~3 

0 0 0 I 0 

0 0 0 0 1 

0 0 0 0 0 

-38887 0 0 -0.8 0 

0 -1318674 0 0 -4.6 

0 0 -9424900 0 0 

0 

0 

I 

0 

0 

-12.3 

Bu = 

0 

0 

0 

6.206 

2.278 

2.680 

Bw = 

0 

0 

0 

71.530 

-70.620 

67 298 

C.= 

1.323 

4.920 

6.090 

0 

0 

0 

G =  

3236 0 0 0 0 0 

0 4.921 0 0 0 0  

0 0 6.090 0 0 0 

0 0 0 100  

0 0 0 0 1 0  

0 0 0 001 

D2~= 

0 
0 
0 

3.103 

1.140 

1.345 

D**~=D®~=D2w=Dyu=Dyw=o, Cy=I 

Control objectives are as follows: 

(I) Guarantee stability of closed-loop system 

and to minimize the influence of the disturbance. 

(2) Obtain good trade-off between the Ho, 
performance and Ha performance. 

Minimize II Twz, lh subject to II Twz.ll®< r 
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(3) Place the closed-loop poles in the region to 

guarantee some minimum decay rate a = - 3  and 

closed-loop damping 0.006, which satisfies some 

transient performance. 

(4) Achieve these objectives for all possible 

values of the varying parameters. Since these 

parameters enter the plant state matrix in affine 

manner, we can model the parameter uncertainty 

by polytopic system with vertices corresponding 

to the combinations ofextremal parameter values. 

To solve Eq. (31), we have implemented a sim- 

plified continuation method involving the con- 

straint constant ?' (Bernstein and Haddad, 1989). 

The idea is to exploit the fact that for large ?' 

the problem is approximated by /-/2 which pro- 

vides a reliable starting solution. The continuati- 

on parameter ?' is then successively decreased 

until either a desired value of ?' is achieved or 

no further decrease is possible. For trade off 

problems, H~. versus /-/2 norm bound yields a 

trade-off curve as shown in Fig. 4. 

In this curve we select the best compromise 

between the H** a n d / / 2  bounds. By inspection of 

this curve, the state-feedback gain K obtained 

for ?'----0.03. Table 3 shows the pole locations of 

the open loop and closed loop system. Corre- 

sponding nominal and robust state feedback gains 

are Knom = [-44.61 - 112.69 -573.72 -4 .72  -5 .70  

--11.59] and Krob= [--159.8 --246.5 --893.9 

--75.2 --68.3 --120.7]. 

Controller characteristics are given in Table 4. 

Moreover, in nominal case II TwJl®=0.0153< 

7=0.03 and II Zwz, II = !i.3608 < trace(Y) = 57.162, 

which is acquired after 38 iterations. In robust 

case, U Tw~.11,,=0.0233<?'=0.03 and II Two211 = 
11.3608< trace(Y) =60.344, which is acquired 

after 70 iterations. The H** and Hz norms of 

the open loop system are II Twz.ll .=0.608 and 

II T~112=63.015, respectively. 

A regional pole placement is applied to the 

piezo/beam system. The conic sector is located at 

T a b l e  3 Pole shifting due to control effect 

Uncontrolled Controlled 

--0.394-1- 197.2j --9.893 -t- 1147.82j 

--2.296+ 1147.9j -- 17.213_ 197.708j 

--6.140_ 3070.0j --22.021 ----- 3069.94j 

Table 4 II Twzll- and [I T~]I2 versus 7 in nominal 
design 

H ,  norm /-/2 norm 
II Twz ll® II Tw~ 112 bound 7 bound Y 

0.01 0.0061 8 0 . 3 0 1 9  16.3369 

0.02 0.0116 6 2 . 6 1 1 4  11.7606 

0.03 0.0153 5 7 . 1 6 2 3  11.3608 

0.04 0.0169 5 4 . 9 5 8 3  11.3366 

0.05 0.0198 5 3 . 9 3 8 0  11.2738 

0.06 0.0220 53.3480 11 2177 

0.07 0.0233 52.9872 1 I. 1849 

T r a d e - o f f  curves:  n o m i n a l  a n d  robus t  
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H-infinity perlormance Tm~e (see) 

Fig. 4 Trade-off curve between the H** and /-/2 Fig. 5 Output system responses subject to impulse 
bound disturbance 
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the origin, which ensures to acquire a damping 

ratio ~'=0.02. 

Figure 5 displays the time response of the clos- 

ed- loop  system subject to impulse disturbances. 

Figure 6 shows uncontrolled and controlled 

time response of the piezo/beam system subject 

to white noise excitations. For  theses transient 

responses, the multiobjective state feedback con- 

trol strategy is very effective in attenuating the 

settling time of the piezo/beam system. 

Figure 7 superimposes the singular value plots 

with uncertainties that are -t-4% range of  natural 

frequency variations of  the first mode. 

The system is well operated to suppress the 

multiple modes over the broad frequency band. 

' 'r'' 
oo.: . .  , , " ,  • , '! -." 

I1= 
-o i 

i 
o ob  '~ 

Fig. 6 Output system responses subject to random 
excitation 

Fig. 7 

/ U c o  nb'olled 

i 

Singular value plot for robust design (Uncer- 
tainties given at the first mode) 

The vibration amplitudes are measured of  30dB 

reduction for the first mode, 13dB for the second 

mode, and 1 ldB for the third mode as shown in 
Fig. 7. 

7. Conclus ions  

An integrated robust controller design proce- 

dure for a piezo/beam system with uncertainties 

due to natural frequency variation is presented in 

this paper. The design procedure involves the 

solutions of  a multiobjective optimization prob- 

lem involving different constraints on the con- 

troller. In the multiobjective state feedback con- 

troller, a systematic LMI based approach to mix- 

ed Hz/H** synthesis with pole clustering con- 

straints has been presented. For  the theoretical 

analysis, the governing equation of motion of 

the smart structural system is derived by using 

Hamilton's principle. The effectiveness of  an LMI 

based robust controller is demonstrated in damp- 

ing out the multiple modes of vibration of the 

piezoelectric laminated beam subject to external 

disturbances and uncertainties. 

References  

Bailey, T. and Hubbard, J., 1985, "Distributed 

Piezoelectric Polymer Active Vibration Control 

of a Cantilever Beam," Journal o f  Guidance, 
Control, and Dynamics, Vol. 8, pp. 605~610. 

Bernstein, D.S.  and Haddad, W.M. ,  "LQG 

Control with an Performance Bound:  A Riccati 

Equation Approach,"  IEEE Trans. on Automatic 
Control, Vol. 34 (3), pp. 293~305. 

Boyd, S., Ghaoui,  L., Feron, E. and Balakri- 

shnan, V., 1994 Linear Matrix Inequalities in 
System and Control Theory, SIAM. 

Chilali,  M. and Gahinet, P., 1996, "Desgin 

with Pole Placement Constraints:  An LMI Ap- 

proach," IEEE Trans on Automatic Control, Vol. 

41 (3), pp. 358~369. 

Fanson, J. L. and Caughey, T. K., 1990, "Posi- 

tive Position Feedback Control for Large Space 
Structures," AIAA Journal, Vol. 28 (4), pp. 717~ 

724. 

Gahinet, P. and Apkarian,  P., 1994, "A Linear 



Analytical Development o f  a Robust Controller for Smart Structural Systems 1147 

Matrix Inequality Approach to Control," Int. 

J. o f  Robust and Nonlinear Control, Vol. 4, 
pp. 421 -- 448. 

Gahinet, P., Nemirovski, L. and Chilali, M., 
1995, The L M I  Control Toolbox, Mathworks. Inc. 

IEEE, 1987, IEEE standard on piezoelectricity, 

IEEE Std. 176-1987. 
Khargonekar, P., Petersen, I. and Rotea, M., 

1998, "H**-Optimal Control with State-Feed- 
back," IEEE Trans on Automatic Control, Vol. 
33, No. 8, pp. 786~788. 

Kim, J. and Nam, C., 1996, "H** Control for 
Flutter Suppression of  a Laminated Plate with 
Self-Sensing Actuators," KSME Journal, Vol. l0 
(2), pp. 169~ 179 in Korean. 

Meirovitch, L., 1967, Analytical Methods in 

Vibrations, London:  Macmillan. 

Ogata, K., 1990, Modern Control Engineering, 

NJ : Prentice-Hall. 

Petersen, I. R. 1987, "Disturbance Attenuation 
and Optimization: A Design Method Based on 
the Algebraic Riccati Equation," IEEE Trans on 

Automatic Control, Voi. 32, No. 5, pp. 427--429. 
Rao, S.S., 1995, Mechanical Vibrations, Ad- 

dison Wesley. 
Scherer, C., Gahinet, P. and Chilali, M., 1997, 

"Multiobjective Output-Feedback Control via 
LMI Optimization," IEEE Trans on Automatic 

Control, Vol. 42, No. 7, pp. 896~91 I. 
Shin, J., Hong, J., Park, S. and Oh, J., 1998, 

"Active Vibration Control of  Flexible Cantilever 
Beam Using Piezo Actuator and Filtered-X LMS 
Algorithm," K S M E  International Journal, Vol. 
12, No. 4, pp. 665 ~ 671. 




